90 research outputs found

    Harold M. Frost T J Musculoskel Neuron Interact 2001; 2(2):117-119 William F. Neuman Awardee 2001

    Get PDF
    Tribute to Harold M. Frost, honorary president of ISMNI, who received the William F. Neuman Award from the American Society of Bone and Mineral Research October 2001

    Increased autophagy in EphrinB2-deficient osteocytes is associated with elevated secondary mineralization and brittle bone

    Get PDF
    Mineralized bone forms when collagen-containing osteoid accrues mineral crystals. This is initiated rapidly (primary mineralization), and continues slowly (secondary mineralization) until bone is remodeled. The interconnected osteocyte network within the bone matrix differentiates from bone-forming osteoblasts; although osteoblast differentiation requires EphrinB2, osteocytes retain its expression. Here we report brittle bones in mice with osteocyte-targeted EphrinB2 deletion. This is not caused by low bone mass, but by defective bone material. While osteoid mineralization is initiated at normal rate, mineral accrual is accelerated, indicating that EphrinB2 in osteocytes limits mineral accumulation. No known regulators of mineralization are modified in the brittle cortical bone but a cluster of autophagy-associated genes are dysregulated. EphrinB2-deficient osteocytes displayed more autophagosomes in vivo and in vitro, and EphrinB2-Fc treatment suppresses autophagy in a RhoA-ROCK dependent manner. We conclude that secondary mineralization involves EphrinB2-RhoA-limited autophagy in osteocytes, and disruption leads to a bone fragility independent of bone mass.Mineralized bone forms when collagen-containing osteoid accrues mineral crystals. This is initiated rapidly (primary mineralization), and continues slowly (secondary mineralization) until bone is remodeled. The interconnected osteocyte network within the bone matrix differentiates from bone-forming osteoblasts; although osteoblast differentiation requires EphrinB2, osteocytes retain its expression. Here we report brittle bones in mice with osteocyte-targeted EphrinB2 deletion. This is not caused by low bone mass, but by defective bone material. While osteoid mineralization is initiated at normal rate, mineral accrual is accelerated, indicating that EphrinB2 in osteocytes limits mineral accumulation. No known regulators of mineralization are modified in the brittle cortical bone but a cluster of autophagy-associated genes are dysregulated. EphrinB2-deficient osteocytes displayed more autophagosomes in vivo and in vitro, and EphrinB2-Fc treatment suppresses autophagy in a RhoA-ROCK dependent manner. We conclude that secondary mineralization involves EphrinB2-RhoA-limited autophagy in osteocytes, and disruption leads to a bone fragility independent of bone mass

    A Bird\u27s-Eye View of the Multiple Biochemical Mechanisms that Propel Pathology of Alzheimer\u27s Disease: Recent Advances and Mechanistic Perspectives on How to Halt the Disease Progression Targeting Multiple Pathways.

    Get PDF
    Neurons consume the highest amount of oxygen, depend on oxidative metabolism for energy, and survive for the lifetime of an individual. Therefore, neurons are vulnerable to death caused by oxidative-stress, accumulation of damaged and dysfunctional proteins and organelles. There is an exponential increase in the number of patients diagnosed with neurodegenerative diseases such as Alzheimer’s (AD) as the number of elderly increases exponentially. Development of AD pathology is a complex phenomenon characterized by neuronal death, accumulation of extracellular amyloid-β plaques and neurofibrillary tangles, and most importantly loss of memory and cognition. These pathologies are most likely caused by mechanisms including oxidative stress, mitochondrial dysfunction/stress, accumulation of misfolded proteins, and defective organelles due to impaired proteasome and autophagy mechanisms. Currently, there are no effective treatments to halt the progression of this disease. In order to treat this complex disease with multiple biochemical pathways involved, a complex treatment regimen targeting different mechanisms should be investigated. Furthermore, as AD is a progressive disease-causing morbidity over many years, any chemo-modulator for treatment must be used over long period of time. Therefore, treatments must be safe and non-interfering with other processes. Ideally, a treatment like medicinal food or a supplement that can be taken regularly without any side effect capable of reducing oxidative stress, stabilizing mitochondria, activating autophagy or proteasome, and increasing energy levels of neurons would be the best solution. This review summarizes progress in research on different mechanisms of AD development and some of the potential therapeutic development strategies targeting the aforementioned pathologies

    From Mawson's hut to skeletal growth: A life in science

    No full text

    Inhibitors of cyclo-oxygenase-2 and secretory phospholipase A2 preserve bone architecture following ovariectomy in adult rats

    Get PDF
    Epidemiological evidence and in vitro data suggest that COX-2 is a key regulator of accelerated remodeling. Accelerated states of osteoblast and osteoclast activity are regulated by prostaglandins in vitro, but experimental evidence for specific roles of cyclooxygenase-2 (COX-2) and secretory phospholipase A2 (sPLA2) in bone adaptive remodeling in vivo is lacking. We found that treatment with a specific COX-2 or sPLA2 (group IIa) inhibitor prevented ovariectomy-induced (OVX-induced) decreases in trabecular connectivity; suppressed the acceleration of bone resorption; and maintained bone turnover at SHAM levels following OVX in the rat. The sPLA2 inhibitor significantly suppressed increases in osteoclast surface induced by OVX, whilst the COX-2 inhibitor only had a marginal effect. These findings demonstrate that specific inhibitors of COX-2 and sPLA2-IIa effectively suppress OVX-induced bone loss in the adult rat by conserving trabecular bone mass and architecture through reduced bone remodeling and decreased resorptive activity. Moreover we report an important role of sPLA2-IIa in osteoclastogenesis independent of the COX-2 metabolic pathway in the OVX rat in vivo

    Monocyte Chemotactic Protein-1 (MCP1) Accumulation in Human Osteoclast Precursor Cultures

    No full text
    In vitro osteoclast methods require constant treatment with macrophage colony stimulating factor (M-CSF) to support precursor survival and addition of the differentiation agent receptor activator of NF-κB ligand (RANKL). Constant exposure to granulocyte macrophage colony stimulating factor (GM-CSF) suppresses human osteoclast formation in vitro. Addition of the chemokine monocyte chemotactic protein-1 (MCP1) to such cultures dramatically increases osteoclast formation and overcomes GM-CSF mediated suppression. We investigated the effect of M-CSF, GM-CSF and the combination of M-CSF and GM-CSF treatment on the expression of chemokines in human CD14+ cells in culture. Of assayed chemokines, MCP1 was the most abundant in terms of mRNA transcript and protein in M-CSF treated cultures and was suppressed by GM-CSF. MCP1 protein accumulated up to 50 ng/mL in culture medium, greatly exceeding other assayed chemokines. C-C chemokine receptor-2 (CCR2) is the receptor for MCP1: the formation of osteoclast-like cells was inhibited by constant exposure to the CCR2 antagonist RS102895, in part by decreasing expression of RANK, the receptor for RANKL

    Prescribing exercise for Osteoporosis

    Full text link
    Osteoporosis is a major public health problem because of the morbidity and mortality associated with fracture. Minimizing the risk of fracture is the primary objective of osteoporosis management. The role of exercise in osteoporosis management is to increase and maintain peak bone density and reduce the rate of bone loss and the risk of falling. This article provides recommendations focusing on a life-span approach to minimizing the risk of fracture associated with osteoporosis. Osteoporosis prevention begins in childhood, when exercise can increase peak bone strength. In young adults, it can maintain peak bone mineral density. In elderly individuals, physical activity can slow bone loss and improve fitness and muscle strength, helping prevent falls and lower the risk of fracture. Exercise goals for individuals with osteoporosis should include reducing pain, increasing mobility, and improving muscle endurance, balance, and stability in order to improve the quality of life and reduce the risk of falling. Thus, exercise plays a significant part in reducing fractures in later life.<br /
    • …
    corecore